Magnesium inhibits nickel-induced genotoxicity and formation of reactive oxygen.

نویسندگان

  • Y C Hong
  • S R Paik
  • H J Lee
  • K H Lee
  • S M Jang
چکیده

Nickel compounds are recognized to cause nasal and lung cancers. Magnesium is an effective protector against nickel-induced carcinogenesis in vivo, although its mechanisms of protection remain elusive. The effects of magnesium carbonate on the cytotoxicity and genotoxicity induced by nickel subsulfide were examined with respect to the inhibition of cell proliferation, micronuclei formation, DNA-protein cross-link formation, and intranuclear nickel concentration. The generation of reactive oxygen by nickel chloride was also analyzed by observing 8-hydroxy-deoxyguanosine formation from deoxyguanosine in the presence and absence of magnesium chloride. The suppression of up to 64% of the proliferation of BALB/3T3 fibroblasts by nickel subsulfide (1 microgram/ml) was reversed by magnesium. The nickel compound increased not only the number of micronuclei but also the amount of DNA-protein cross-links examined with CHO and BALB/3T3 cells, respectively. These genotoxic effects of nickel were again lessened by magnesium carbonate. In addition, the cellular accumulation of nickel increased 80-fold with nickel subsulfide treatment and decreased with magnesium carbonate treatment. Nickel also enhanced 8-hydroxy-deoxyguanosine formation in the presence of H2O2 and ascorbic acid, where magnesium played another suppressive role. In fact, inhibition by magnesium was still observed even in the absence of nickel treatment. These results suggest that the protective role of magnesium in nickel-induced cytotoxicity and genotoxicity can be attributed to its ability to reduce either the intracellular nickel concentration or reactive oxygen formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Mechanochemical Synthesis of Nanostructured MgXNi1-XO Compound by Mg-NiO Mixture

Synthesis of magnesium nickel oxide phase such as MgxNi1-xO solid solutions has been studied in this research article using mechnochmical reaction between magnesium and nickel oxide. Mixtures of magnesium powder and nickel oxide (Mg+NiO) with stoichiometric compositions were milled for different times in a planetary ball mill. Reduction reaction of nickel oxide by magnesium via a mechanically i...

متن کامل

Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy

Objective(s):  The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...

متن کامل

The role of nickel and nickel-mediated reactive oxygen species in the mechanism of nickel carcinogenesis.

Increasing evidence demonstrates the reactive oxygen species (ROS) are implicated in metal carcinogenesis. Exposure of cultured Chinese hamster ovary (CHO) cells to several nickel compounds, i.e. NiS, Ni3S2, NiO (black and green), and NiCl2 has been shown to increase oxidation of 2',7-dichlorofluorescein to the fluorescent 2',7-dichlorofluorescein (DCF), suggesting that nickel compounds increas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 105  شماره 

صفحات  -

تاریخ انتشار 1997